News

Article

Credit: National University of Singapore

Credit: National University of Singapore

NUS engineers invent BATLESS microchip that helps IoT devices achieve battery indifference

The National University of Singapore (NUS) announced that NUS Associate Professor Massimo Alioto and his team of engineers have invented a new smart microchip that can self-start and continue to operate even when the battery runs out of energy.

The novel technology would help maximise the lifetime and enables smaller and cheaper Internet of Things (IoT) devices. This research breakthrough would substantially reduce the size of batteries required to power IoT sensor nodes, making them 10 times smaller and cheaper to produce.

 “We have demonstrated that batteries used for IoT devices can be shrunk substantially, as they do not always need to be available to maintain continuous operation. Tackling this fundamental problem is a major advancement towards the ultimate vision of IoT sensor nodes without the use of batteries, and will pave the way for a world with a trillion IoT devices,” said Associate Professor Massimo Alioto from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering.

IoT devices, such as sensors, are often deployed on a massive scale and in places that are usually remote and difficult to service regularly, thus making their self-sufficiency essential. As such, one of the key challenges of IoT devices is to have long-lasting operation under tightly constrained energy sources, thus demanding high level of power efficiency.

According to the press release, current batteries in IoT devices are much larger and up to 3 times more expensive than the single chip they power. Their size is determined by the sensor node lifetime, which directly affects how often they need to be changed. This has implications on maintenance cost and impact on the environment when batteries are disposed. However, existing IoT devices cannot operate without battery, and small batteries are fully discharged more frequently. Hence, battery miniaturisation often results in highly discontinuous operation of IoT devices, as they stop functioning every time the battery runs out of energy.

To address this technology gap, a team of engineers from the NUS has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy.

BATLESS is designed with a novel power management technique that allows it to self-start and continue to function under dim light without any battery assistance, using a very small on-chip solar cell. The microchip is also equipped with a new power management technique that enables operations to be self-started, while being powered directly by the tiny on-chip solar cell, with no battery assistance.

“BATLESS is the first example of a new class of chips that are indifferent to battery charge availability. In minimum-power mode, it uses 1,000 to 100,000 times less power, compared to the best existing microcontrollers designed for fixed minimum-energy operation. At the same time, our 16-bit microcontroller can also operate 100,000 times faster than others that have been recently designed for fixed minimum-power operation. In short, the BATLESS microchip covers a very wide range of possible energy, power, and speed trade-offs, as allowed by the flexibility offered through the two different modes,” Associate Professor Alioto added.

Battery indifference is the ability for IoT devices to continue operations, even when the battery is exhausted. It is achieved by operating in two different modes: minimum-energy and minimum-power.

When the battery energy is available, the chip runs in minimum-energy mode to maximise the battery lifetime. However, when the battery is exhausted, the chip switches to the minimum-power mode and operates with a tiny power consumption of about half a nanoWatt. Power can be provided by a very small on-chip solar cell that is about half a square millimetre in area, or other forms of energy available from the environment, such as vibration or heat.

Despite being in minimum-power mode when battery is not available, the reduced speed of the microchip is still adequate for numerous IoT applications that need to sense parameters that vary slowly in time, including temperature, humidity, light, and pressure. Among many other applications, BATLESS is very well suited for smart buildings, environmental monitoring, energy management, and adaptation of living spaces to occupants’ needs.

Such ability to switch between minimum energy and minimum power mode means that the BATLESS microchip enables the IoT device to uninterruptedly sense, process, capture and timestamp events of interest, and for such valuable data to be wirelessly transmitted to the cloud when the battery becomes available again.

The research breakthrough has been presented at the International Solid-State Circuits Conference (ISSCC) 2018 conference in San Francisco, the premier global forum for presenting advances in solid-state circuits and systems-on-a-chip.

The NUS Engineering team is now exploring new solutions to build complete battery indifferent systems that cover the entire signal chain from sensor to wireless communications, thus expanding the current work on microcontrollers and power management. The research team aims to demonstrate a solution that shrinks the battery to millimetres, with the long-term goal of completely eliminating the need for it.

Visit site to retreive White Paper:
Download
FB Twitter LinkedIn YouTube